cs.AI updates on arXiv.org 07月09日 12:01
PLACE: Prompt Learning for Attributed Community Search
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为PLACE的图神经网络社区搜索框架,通过在图中插入可学习提示标记,增强了节点间的连接,提高了社区搜索的准确性。实验表明,该框架在三个社区搜索任务上均优于现有技术。

arXiv:2507.05311v1 Announce Type: cross Abstract: In this paper, we propose PLACE (Prompt Learning for Attributed Community Search), an innovative graph prompt learning framework for ACS. Enlightened by prompt-tuning in Natural Language Processing (NLP), where learnable prompt tokens are inserted to contextualize NLP queries, PLACE integrates structural and learnable prompt tokens into the graph as a query-dependent refinement mechanism, forming a prompt-augmented graph. Within this prompt-augmented graph structure, the learned prompt tokens serve as a bridge that strengthens connections between graph nodes for the query, enabling the GNN to more effectively identify patterns of structural cohesiveness and attribute similarity related to the specific query. We employ an alternating training paradigm to optimize both the prompt parameters and the GNN jointly. Moreover, we design a divide-and-conquer strategy to enhance scalability, supporting the model to handle million-scale graphs. Extensive experiments on 9 real-world graphs demonstrate the effectiveness of PLACE for three types of ACS queries, where PLACE achieves higher F1 scores by 22% compared to the state-of-the-arts on average.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图神经网络 社区搜索 提示学习
相关文章