cs.AI updates on arXiv.org 07月09日 12:01
Enjoying Non-linearity in Multinomial Logistic Bandits
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究多项式逻辑赌徒问题,扩展了现有逻辑模型的非线性分析,提出适用于复杂应用场景的算法,提高了 regret 保障。

arXiv:2507.05306v1 Announce Type: cross Abstract: We consider the multinomial logistic bandit problem, a variant of generalized linear bandits where a learner interacts with an environment by selecting actions to maximize expected rewards based on probabilistic feedback from multiple possible outcomes. In the binary setting, recent work has focused on understanding the impact of the non-linearity of the logistic model (Faury et al., 2020; Abeille et al., 2021). They introduced a problem-dependent constant $\kappa*$, that may be exponentially large in some problem parameters and which is captured by the derivative of the sigmoid function. It encapsulates the non-linearity and improves existing regret guarantees over $T$ rounds from $\smash{O(d\sqrt{T})}$ to $\smash{O(d\sqrt{T/\kappa})}$, where $d$ is the dimension of the parameter space. We extend their analysis to the multinomial logistic bandit framework, making it suitable for complex applications with more than two choices, such as reinforcement learning or recommender systems. To achieve this, we extend the definition of $\kappa_$ to the multinomial setting and propose an efficient algorithm that leverages the problem's non-linearity. Our method yields a problem-dependent regret bound of order $ \smash{\widetilde{\mathcal{O}}( Kd \sqrt{{T}/{\kappa*}})} $, where $K$ is the number of actions and $\kappa \ge 1$. This improves upon the best existing guarantees of order $ \smash{\widetilde{\mathcal{O}}( Kd \sqrt{T} )} $. Moreover, we provide a $\smash{ \Omega(d\sqrt{T/\kappa_})}$ lower-bound, showing that our dependence on $\kappa_*$ is optimal.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多项式逻辑赌徒问题 非线性分析 算法优化
相关文章