cs.AI updates on arXiv.org 07月09日 12:01
Narrowing the Gap: Supervised Fine-Tuning of Open-Source LLMs as a Viable Alternative to Proprietary Models for Pedagogical Tools
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出小规模语言模型在编程教育中的应用,通过监督微调提升教学效果,并分析模型大小与质量间的权衡。

arXiv:2507.05305v1 Announce Type: cross Abstract: Frontier Large language models (LLMs) like ChatGPT and Gemini can decipher cryptic compiler errors for novice programmers, but their computational scale, cost, and tendency to over-assist make them problematic for widespread pedagogical adoption. This work demonstrates that smaller, specialised language models, enhanced via Supervised Fine-Tuning (SFT), present a more viable alternative for educational tools. We utilise a new dataset of 40,000 C compiler error explanations, derived from real introductory programming (CS1/2) student-generated programming errors, which we used to fine-tune three open-source models: Qwen3-4B, Llama-3.1-8B, and Qwen3-32B. We performed a dual evaluation, combining expert human reviews with a large-scale automated analysis of 8,000 responses using a validated LLM-as-judge ensemble. Our results show that SFT significantly boosts the pedagogical quality of smaller models, achieving performance comparable to much larger models. We analyse the trade-offs between model size and quality, confirming that fine-tuning compact, efficient models on high-quality, domain-specific data is a potent strategy for creating specialised models to drive educational tools. We provide a replicable methodology to foster broader access to generative AI capabilities in educational contexts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

编程教育 语言模型 监督微调
相关文章