cs.AI updates on arXiv.org 07月09日 12:01
Physics-Informed Graph Neural Networks to Reconstruct Local Fields Considering Finite Strain Hyperelasticity
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于图神经网络的物理信息机器学习框架P-DivGNN,用于在多尺度模拟中重建局部应力场。该方法通过将周期性微结构表示为图,并结合消息传递图神经网络,实现局部应力场分布的检索。P-DivGNN在非线性超弹性情况下,相比有限元模拟,显著提高了计算速度,适用于大规模应用。

arXiv:2507.05291v1 Announce Type: cross Abstract: We propose a physics-informed machine learning framework called P-DivGNN to reconstruct local stress fields at the micro-scale, in the context of multi-scale simulation given a periodic micro-structure mesh and mean, macro-scale, stress values. This method is based in representing a periodic micro-structure as a graph, combined with a message passing graph neural network. We are able to retrieve local stress field distributions, providing average stress values produced by a mean field reduced order model (ROM) or Finite Element (FE) simulation at the macro-scale. The prediction of local stress fields are of utmost importance considering fracture analysis or the definition of local fatigue criteria. Our model incorporates physical constraints during training to constraint local stress field equilibrium state and employs a periodic graph representation to enforce periodic boundary conditions. The benefits of the proposed physics-informed GNN are evaluated considering linear and non linear hyperelastic responses applied to varying geometries. In the non-linear hyperelastic case, the proposed method achieves significant computational speed-ups compared to FE simulation, making it particularly attractive for large-scale applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

物理信息机器学习 图神经网络 微尺度应力场重建
相关文章