cs.AI updates on arXiv.org 07月09日 12:01
Beyond classical and contemporary models: a transformative ai framework for student dropout prediction in distance learning using rag, prompt engineering, and cross-modal fusion
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种AI框架,通过RAG、提示工程和跨模态注意力融合技术,提高在线教育学生辍学预测的准确性,并生成可解释的干预措施。

arXiv:2507.05285v1 Announce Type: cross Abstract: Student dropout in distance learning remains a critical challenge, with profound societal and economic consequences. While classical machine learning models leverage structured socio-demographic and behavioral data, they often fail to capture the nuanced emotional and contextual factors embedded in unstructured student interactions. This paper introduces a transformative AI framework that redefines dropout prediction through three synergistic innovations: Retrieval-Augmented Generation (RAG) for domain-specific sentiment analysis, prompt engineering to decode academic stressors, and cross-modal attention fusion to dynamically align textual, behavioral, and socio-demographic insights. By grounding sentiment analysis in a curated knowledge base of pedagogical content, our RAG-enhanced BERT model interprets student comments with unprecedented contextual relevance, while optimized prompts isolate indicators of academic distress (e.g., "isolation," "workload anxiety"). A cross-modal attention layer then fuses these insights with temporal engagement patterns, creating holistic risk profiles. Evaluated on a longitudinal dataset of 4 423 students, the framework achieves 89% accuracy and an F1-score of 0.88, outperforming conventional models by 7% and reducing false negatives by 21%. Beyond prediction, the system generates interpretable interventions by retrieving contextually aligned strategies (e.g., mentorship programs for isolated learners). This work bridges the gap between predictive analytics and actionable pedagogy, offering a scalable solution to mitigate dropout risks in global education systems

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI教育 辍学预测 RAG模型
相关文章