cs.AI updates on arXiv.org 07月09日 12:01
FuzzFeed: An Automatic Approach to Weakest Precondition Generation using LLMs and Fuzzing
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出结合大型语言模型(LLMs)与模糊测试生成最弱前缀(WP),通过Fuzzing Guidance(FG)引导LLMs,利用模糊测试验证WP的有效性,提升WP生成能力。

arXiv:2507.05272v1 Announce Type: cross Abstract: The weakest precondition (WP) of a program describes the largest set of initial states from which all terminating executions of the program satisfy a given postcondition. The generation of WPs is an important task with practical applications in areas ranging from verification to run-time error checking. This paper proposes the combination of Large Language Models (LLMs) and fuzz testing for generating WPs. In pursuit of this goal, we introduce Fuzzing Guidance (FG); FG acts as a means of directing LLMs towards correct WPs using program execution feedback. FG utilises fuzz testing for approximately checking the validity and weakness of candidate WPs, this information is then fed back to the LLM as a means of context refinement. We demonstrate the effectiveness of our approach on a comprehensive benchmark set of deterministic array programs in Java. Our experiments indicate that LLMs are capable of producing viable candidate WPs, and that this ability can be practically enhanced through FG.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 模糊测试 WP生成 程序验证 Fuzzing Guidance
相关文章