cs.AI updates on arXiv.org 07月09日 12:01
AI-Based Demand Forecasting and Load Balancing for Optimising Energy use in Healthcare Systems: A real case study
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于LSTM、遗传算法和SHAP的AI框架,用于医疗设施能源管理,显著提升预测准确性及能源效率。

arXiv:2507.06077v1 Announce Type: new Abstract: This paper tackles the urgent need for efficient energy management in healthcare facilities, where fluctuating demands challenge operational efficiency and sustainability. Traditional methods often prove inadequate, causing inefficiencies and higher costs. To address this, the study presents an AI-based framework combining Long Short-Term Memory (LSTM), genetic algorithm (GA), and SHAP (Shapley Additive Explanations), specifically designed for healthcare energy management. Although LSTM is widely used for time-series forecasting, its application in healthcare energy prediction remains underexplored. The results reveal that LSTM significantly outperforms ARIMA and Prophet models in forecasting complex, non-linear demand patterns. LSTM achieves a Mean Absolute Error (MAE) of 21.69 and Root Mean Square Error (RMSE) of 29.96, far better than Prophet (MAE: 59.78, RMSE: 81.22) and ARIMA (MAE: 87.73, RMSE: 125.22), demonstrating superior performance. The genetic algorithm is applied to optimize model parameters and improve load balancing strategies, enabling adaptive responses to real-time energy fluctuations. SHAP analysis further enhances model transparency by explaining the influence of different features on predictions, fostering trust in decision-making processes. This integrated LSTM-GA-SHAP approach offers a robust solution for improving forecasting accuracy, boosting energy efficiency, and advancing sustainability in healthcare facilities. Future research may explore real-time deployment and hybridization with reinforcement learning for continuous optimization. Overall, the study establishes a solid foundation for using AI in healthcare energy management, highlighting its scalability, efficiency, and resilience potential.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI 能源管理 医疗设施 LSTM 预测模型
相关文章