arXiv:2507.05716v1 Announce Type: new Abstract: Background: Evaluating AI-generated treatment plans is a key challenge as AI expands beyond diagnostics, especially with new reasoning models. This study compares plans from human experts and two AI models (a generalist and a reasoner), assessed by both human peers and a superior AI judge. Methods: Ten dermatologists, a generalist AI (GPT-4o), and a reasoning AI (o3) generated treatment plans for five complex dermatology cases. The anonymized, normalized plans were scored in two phases: 1) by the ten human experts, and 2) by a superior AI judge (Gemini 2.5 Pro) using an identical rubric. Results: A profound 'evaluator effect' was observed. Human experts scored peer-generated plans significantly higher than AI plans (mean 7.62 vs. 7.16; p=0.0313), ranking GPT-4o 6th (mean 7.38) and the reasoning model, o3, 11th (mean 6.97). Conversely, the AI judge produced a complete inversion, scoring AI plans significantly higher than human plans (mean 7.75 vs. 6.79; p=0.0313). It ranked o3 1st (mean 8.20) and GPT-4o 2nd, placing all human experts lower. Conclusions: The perceived quality of a clinical plan is fundamentally dependent on the evaluator's nature. An advanced reasoning AI, ranked poorly by human experts, was judged as superior by a sophisticated AI, revealing a deep gap between experience-based clinical heuristics and data-driven algorithmic logic. This paradox presents a critical challenge for AI integration, suggesting the future requires synergistic, explainable human-AI systems that bridge this reasoning gap to augment clinical care.