cs.AI updates on arXiv.org 07月09日 12:01
Towards Measurement Theory for Artificial Intelligence
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出建立人工智能测量理论的框架,旨在通过标准化评估方法,连接前沿AI评价与工程安全科学定量风险分析,并强调AI能力与测量操作和尺度之间的关联。

arXiv:2507.05587v1 Announce Type: new Abstract: We motivate and outline a programme for a formal theory of measurement of artificial intelligence. We argue that formalising measurement for AI will allow researchers, practitioners, and regulators to: (i) make comparisons between systems and the evaluation methods applied to them; (ii) connect frontier AI evaluations with established quantitative risk analysis techniques drawn from engineering and safety science; and (iii) foreground how what counts as AI capability is contingent upon the measurement operations and scales we elect to use. We sketch a layered measurement stack, distinguish direct from indirect observables, and signpost how these ingredients provide a pathway toward a unified, calibratable taxonomy of AI phenomena.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能 测量理论 风险分析
相关文章