cs.AI updates on arXiv.org 07月08日 14:58
Evaluating the Impact of Multiple DER Aggregators on Wholesale Energy Markets: A Hybrid Mean Field Approach
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章探讨了分布式能源资源在批发市场中的集成策略,通过多代理互动模型,结合均值场博弈和强化学习方法,提高市场效率,降低价格波动。

arXiv:2409.00107v2 Announce Type: replace-cross Abstract: The integration of distributed energy resources (DERs) into wholesale energy markets can greatly enhance grid flexibility, improve market efficiency, and contribute to a more sustainable energy future. As DERs -- such as solar PV panels and energy storage -- proliferate, effective mechanisms are needed to ensure that small prosumers can participate meaningfully in these markets. We study a wholesale market model featuring multiple DER aggregators, each controlling a portfolio of DER resources and bidding into the market on behalf of the DER asset owners. The key of our approach lies in recognizing the repeated nature of market interactions the ability of participants to learn and adapt over time. Specifically, Aggregators repeatedly interact with each other and with other suppliers in the wholesale market, collectively shaping wholesale electricity prices (aka the locational marginal prices (LMPs)). We model this multi-agent interaction using a mean-field game (MFG), which uses market information -- reflecting the average behavior of market participants -- to enable each aggregator to predict long-term LMP trends and make informed decisions. For each aggregator, because they control the DERs within their portfolio under certain contract structures, we employ a mean-field control (MFC) approach (as opposed to a MFG) to learn an optimal policy that maximizes the total rewards of the DERs under their management. We also propose a reinforcement learning (RL)-based method to help each agent learn optimal strategies within the MFG framework, enhancing their ability to adapt to market conditions and uncertainties. Numerical simulations show that LMPs quickly reach a steady state in the hybrid mean-field approach. Furthermore, our results demonstrate that the combination of energy storage and mean-field learning significantly reduces price volatility compared to scenarios without storage.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

分布式能源资源 批发市场 均值场博弈 强化学习 价格波动
相关文章