cs.AI updates on arXiv.org 07月08日 14:58
Fairness Evolution in Continual Learning for Medical Imaging
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了深度学习在医学图像诊断中的应用,分析了持续学习(CL)在医疗领域的挑战与偏见问题,并评估了不同CL策略对偏见演化的影响,发现Pseudo-Label方法在保证分类性能的同时降低了偏见。

arXiv:2406.02480v2 Announce Type: replace-cross Abstract: Deep Learning has advanced significantly in medical applications, aiding disease diagnosis in Chest X-ray images. However, expanding model capabilities with new data remains a challenge, which Continual Learning (CL) aims to address. Previous studies have evaluated CL strategies based on classification performance; however, in sensitive domains such as healthcare, it is crucial to assess performance across socially salient groups to detect potential biases. This study examines how bias evolves across tasks using domain-specific fairness metrics and how different CL strategies impact this evolution. Our results show that Learning without Forgetting and Pseudo-Label achieve optimal classification performance, but Pseudo-Label is less biased.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 医学图像 持续学习 偏见评估 Pseudo-Label
相关文章