cs.AI updates on arXiv.org 07月08日 14:58
Federated Learning for Big Data: A Survey on Opportunities, Applications, and Future Directions
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了联邦学习在大数据服务中的应用,包括大数据采集、存储、分析和隐私保护,并探讨了其在智能城市、智能医疗、智能交通等领域的应用潜力及挑战。

arXiv:2110.04160v3 Announce Type: replace-cross Abstract: In the recent years, generation of data have escalated to extensive dimensions and big data has emerged as a propelling force in the development of various machine learning advances and internet-of-things (IoT) devices. In this regard, the analytical and learning tools that transport data from several sources to a central cloud for its processing, training, and storage enable realization of the potential of big data. Nevertheless, since the data may contain sensitive information like banking account information, government information, and personal information, these traditional techniques often raise serious privacy concerns. To overcome such challenges, Federated Learning (FL) emerges as a sub-field of machine learning that focuses on scenarios where several entities (commonly termed as clients) work together to train a model while maintaining the decentralisation of their data. Although enormous efforts have been channelized for such studies, there still exists a gap in the literature wherein an extensive review of FL in the realm of big data services remains unexplored. The present paper thus emphasizes on the use of FL in handling big data and related services which encompasses comprehensive review of the potential of FL in big data acquisition, storage, big data analytics and further privacy preservation. Subsequently, the potential of FL in big data applications, such as smart city, smart healthcare, smart transportation, smart grid, and social media are also explored. The paper also highlights various projects pertaining to FL-big data and discusses the associated challenges related to such implementations. This acts as a direction of further research encouraging the development of plausible solutions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 大数据 隐私保护 智能应用 技术综述
相关文章