cs.AI updates on arXiv.org 07月08日 14:58
Dissecting Clinical Reasoning in Language Models: A Comparative Study of Prompts and Model Adaptation Strategies
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究首次评估了提示结构及微调技术在临床自然语言推理中的影响,发现提示类型可解释44%的模型性能差异,LoRA微调可提升模型性能并缩小与前沿模型的差距。

arXiv:2507.04142v1 Announce Type: cross Abstract: Recent works on large language models (LLMs) have demonstrated the impact of prompting strategies and fine-tuning techniques on their reasoning capabilities. Yet, their effectiveness on clinical natural language inference (NLI) remains underexplored. This study presents the first controlled evaluation of how prompt structure and efficient fine-tuning jointly shape model performance in clinical NLI. We inspect four classes of prompting strategies to elicit reasoning in LLMs at different levels of abstraction, and evaluate their impact on a range of clinically motivated reasoning types. For each prompting strategy, we construct high-quality demonstrations using a frontier model to distil multi-step reasoning capabilities into smaller models (4B parameters) via Low-Rank Adaptation (LoRA). Across different language models fine-tuned on the NLI4CT benchmark, we found that prompt type alone accounts for up to 44% of the variance in macro-F1. Moreover, LoRA fine-tuning yields consistent gains of +8 to 12 F1, raises output alignment above 97%, and narrows the performance gap to GPT-4o-mini to within 7.1%. Additional experiments on reasoning generalisation reveal that LoRA improves performance in 75% of the models on MedNLI and TREC Clinical Trials Track. Overall, these findings demonstrate that (i) prompt structure is a primary driver of clinical reasoning performance, (ii) compact models equipped with strong prompts and LoRA can rival frontier-scale systems, and (iii) reasoning-type-aware evaluation is essential to uncover prompt-induced trade-offs. Our results highlight the promise of combining prompt design and lightweight adaptation for more efficient and trustworthy clinical NLP systems, providing insights on the strengths and limitations of widely adopted prompting and parameter-efficient techniques in highly specialised domains.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

临床自然语言推理 提示结构 微调技术 LoRA 模型性能
相关文章