cs.AI updates on arXiv.org 07月08日 14:58
TopoMAS: Large Language Model Driven Topological Materials Multiagent System
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

介绍TopoMAS,一种交互式人机框架,优化拓扑材料发现流程,实现知识图谱动态更新,提高发现效率,推动材料科学领域发展。

arXiv:2507.04053v1 Announce Type: cross Abstract: Topological materials occupy a frontier in condensed-matter physics thanks to their remarkable electronic and quantum properties, yet their cross-scale design remains bottlenecked by inefficient discovery workflows. Here, we introduce TopoMAS (Topological materials Multi-Agent System), an interactive human-AI framework that seamlessly orchestrates the entire materials-discovery pipeline: from user-defined queries and multi-source data retrieval, through theoretical inference and crystal-structure generation, to first-principles validation. Crucially, TopoMAS closes the loop by autonomously integrating computational outcomes into a dynamic knowledge graph, enabling continuous knowledge refinement. In collaboration with human experts, it has already guided the identification of novel topological phases SrSbO3, confirmed by first-principles calculations. Comprehensive benchmarks demonstrate robust adaptability across base Large Language Model, with the lightweight Qwen2.5-72B model achieving 94.55% accuracy while consuming only 74.3-78.4% of tokens required by Qwen3-235B and 83.0% of DeepSeek-V3's usage--delivering responses twice as fast as Qwen3-235B. This efficiency establishes TopoMAS as an accelerator for computation-driven discovery pipelines. By harmonizing rational agent orchestration with a self-evolving knowledge graph, our framework not only delivers immediate advances in topological materials but also establishes a transferable, extensible paradigm for materials-science domain.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

拓扑材料 材料科学 人工智能 知识图谱 发现效率
相关文章