cs.AI updates on arXiv.org 07月08日 14:58
A Comparative Study of Specialized LLMs as Dense Retrievers
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文系统研究任务特定适应性对大型语言模型检索能力的影响,通过实验发现数学专业化和长期推理能力导致检索效果下降,而视觉-语言模型和代码专用LLM在零样本检索和监督设置中表现出色。

arXiv:2507.03958v1 Announce Type: cross Abstract: While large language models (LLMs) are increasingly deployed as dense retrievers, the impact of their domain-specific specialization on retrieval effectiveness remains underexplored. This investigation systematically examines how task-specific adaptations in LLMs influence their retrieval capabilities, an essential step toward developing unified retrievers capable of handling text, code, images, and multimodal content. We conduct extensive experiments with eight Qwen2.5 7B LLMs, including base, instruction-tuned, code/math-specialized, long reasoning, and vision-language models across zero-shot retrieval settings and the supervised setting. For the zero-shot retrieval settings, we consider text retrieval from the BEIR benchmark and code retrieval from the CoIR benchmark. Further, to evaluate supervised performance, all LLMs are fine-tuned on the MS MARCO dataset. We find that mathematical specialization and the long reasoning capability cause consistent degradation in three settings, indicating conflicts between mathematical reasoning and semantic matching. The vision-language model and code-specialized LLMs demonstrate superior zero-shot performance compared to other LLMs, even surpassing BM25 on the code retrieval task, and maintain comparable performance to base LLMs in supervised settings. These findings suggest promising directions for the unified retrieval task leveraging cross-domain and cross-modal fusion.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 检索效能 任务适应性 视觉-语言模型 代码专用模型
相关文章