cs.AI updates on arXiv.org 07月08日
Enhanced accuracy through ensembling of randomly initialized auto-regressive models for time-dependent PDEs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出一种深度集成框架,通过并行训练多个机器学习模型并聚合预测结果,有效降低PDE系统预测误差,实现高效且准确的预测。

arXiv:2507.03863v1 Announce Type: cross Abstract: Systems governed by partial differential equations (PDEs) require computationally intensive numerical solvers to predict spatiotemporal field evolution. While machine learning (ML) surrogates offer faster solutions, autoregressive inference with ML models suffer from error accumulation over successive predictions, limiting their long-term accuracy. We propose a deep ensemble framework to address this challenge, where multiple ML surrogate models with random weight initializations are trained in parallel and aggregated during inference. This approach leverages the diversity of model predictions to mitigate error propagation while retaining the autoregressive strategies ability to capture the system's time dependent relations. We validate the framework on three PDE-driven dynamical systems - stress evolution in heterogeneous microstructures, Gray-Scott reaction-diffusion, and planetary-scale shallow water system - demonstrating consistent reduction in error accumulation over time compared to individual models. Critically, the method requires only a few time steps as input, enabling full trajectory predictions with inference times significantly faster than numerical solvers. Our results highlight the robustness of ensemble methods in diverse physical systems and their potential as efficient and accurate alternatives to traditional solvers. The codes for this work are available on GitHub (https://github.com/Graham-Brady-Research-Group/AutoregressiveEnsemble_SpatioTemporal_Evolution).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PDE系统 机器学习 深度集成 预测精度
相关文章