cs.AI updates on arXiv.org 07月08日 14:58
KEA Explain: Explanations of Hallucinations using Graph Kernel Analysis
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为KEA Explain的神经符号框架,用于检测和解释大型语言模型(LLMs)生成的幻觉,通过比较LLM输出构建的知识图谱与真实数据,提高LLMs在关键领域的可靠性。

arXiv:2507.03847v1 Announce Type: cross Abstract: Large Language Models (LLMs) frequently generate hallucinations: statements that are syntactically plausible but lack factual grounding. This research presents KEA (Kernel-Enriched AI) Explain: a neurosymbolic framework that detects and explains such hallucinations by comparing knowledge graphs constructed from LLM outputs with ground truth data from Wikidata or contextual documents. Using graph kernels and semantic clustering, the method provides explanations for detected hallucinations, ensuring both robustness and interpretability. Our framework achieves competitive accuracy in detecting hallucinations across both open- and closed-domain tasks, and is able to generate contrastive explanations, enhancing transparency. This research advances the reliability of LLMs in high-stakes domains and provides a foundation for future work on precision improvements and multi-source knowledge integration.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 幻觉检测 神经符号框架 知识图谱 语义聚类
相关文章