使用 SVHN 的数据集进行模型的训练,但是整个模型在训练集上的准确率是一直在上升的,但是到了测试集上就一直卡在 95%,都 3 天了,求各位大佬帮我看下有没有优化的方案!跪谢!
import torchimport torch.nn as nnimport torch.optim as optimfrom torch.distributed.checkpoint import load_state_dictfrom torch.hub import load_state_dict_from_urlfrom torch.nn.modules.loss import _Lossfrom torch.optim import Optimizerfrom torch.utils.data import Dataset, random_split, DataLoaderimport torchvisionfrom torchvision.transforms import transformsimport torchvision.models as mimport matplotlib.pyplot as pltimport randomimport gc # 用于垃圾回收from torchinfo import summaryimport numpy as npimport randomimport gc# 设置随机数种子SEED = 420random.seed(SEED)np.random.seed(SEED)torch.manual_seed(SEED)torch.cuda.manual_seed(SEED)torch.cuda.manual_seed_all(SEED)torch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = False# 设置使用 gpu 还是 cpu 进行训练device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 定义训练的论述epochs = 100lr = 0.0001# 定义数据集需要的参数batchSize = 64# 加载训练集需要的数据转换器trainT = transforms.Compose([ transforms.RandomCrop(28), transforms.RandomRotation(degrees=[-15, 15]), transforms.ToTensor(), transforms.Normalize(mean = [0.4377, 0.4438, 0.4728], std = [0.1980, 0.2010, 0.1970])])# 加载测试集需要的数据转换器testT = transforms.Compose([ transforms.CenterCrop(28), transforms.ToTensor(), transforms.Normalize(mean = [0.4377, 0.4438, 0.4728], std = [0.1980, 0.2010, 0.1970])])# 加载训练集数据svhn_train = torchvision.datasets.SVHN(root='C:\\FashionMNIST' , split="train" , download=True , transform=trainT )# 加载测试集数据svhn_test = torchvision.datasets.SVHN(root='C:\\FashionMNIST' , split="test" , download=True , transform=testT )# 定义神经网络,因为我们的图片的尺寸和样本数量都不是很大,所以选择从 ResNet18 和 Vgg16 中抽取层来构建网络resnet18_ = m.resnet18()class MyResNet(nn.Module): # 这个是基于 ResNet18 构建的网络 def __init__(self): super(MyResNet, self).__init__() self.block1 = nn.Sequential( nn.Conv2d(3, 64, 3, 1, 1), resnet18_.bn1, resnet18_.relu ) self.block2 = resnet18_.layer2 # 连权重都会复用过来,在 resnet18_ = m.resnet18() 这儿就已经初始化好了权重数据! self.block3 = resnet18_.layer3 self.block4 = resnet18_.layer4 # 从 Resnet18 中哪 layer 新增到自己的模型中 self.avgpool = resnet18_.avgpool self.fc = nn.Linear(512, 10, True) def forward(self, x): x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) # 这儿新增一条处理代码 x = self.avgpool(x) x = x.view(-1, 512) return self.fc(x)vgg16_ = m.vgg16()class MyVgg(nn.Module): # 这个是基于 Vgg16 构建的网络 def __init__(self): super(MyVgg, self).__init__() self.features = nn.Sequential( *vgg16_.features[0:9], # 使用*是 将 .features[0:9]提取出来的层,全部取出来,一个个放到当前的 Sequential 中,而不是组成一个 Sequential 放到当前的 Sequential 中! nn.Conv2d(128, 128, 3, 1, 1), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2, padding=0, dilation=1, ceil_mode=False) ) self.avgpool = vgg16_.avgpool self.fc = nn.Sequential( nn.Linear(6272, 4096, True), *vgg16_.classifier[1:6], nn.Linear(4096, 10, True) ) def forward(self, x): x = self.features(x) x = self.avgpool(x) x = x.view(-1, 6272) x = self.fc(x) return x# summary(MyVgg(), input_size=(10, 3, 28, 28)) # 一定要,实例化跑一下,看看有没有问题!class earlyStopping(): def __init__(self, patience=5, tol=0.0005): # 当连续 patience=5 次,本轮次的迭代的损失与历史最小的损失的差值大于 0.0005 这个阈值,就会停止训练 self.patience = patience self.tol = tol self.counter = 0 # 计数器 self.lowest_loss = None # 记录历史最小损失 self.early_stop = False # 需要返回是否需要提前停止 def __call__(self, val_loss): # val_loss 是记录测试集或训练集上一次 epoch 的损失 if self.lowest_loss is None: self.lowest_loss = val_loss elif self.lowest_loss - val_loss > self.tol: self.lowest_loss = val_loss self.counter = 0 elif self.lowest_loss - val_loss < self.tol: self.counter += 1 print('Notice: Early stopping counter {} of {}'.format(self.counter, self.patience)) if self.counter >= self.patience: print('Notice: Early stopping counter Active') self.early_stop = True return self.early_stop# 定义训练函数def fit(net: nn.Module, lossFunc: _Loss, op: Optimizer, trainData: DataLoader, testData: DataLoader, epochs: int): transLost = [] # 用于收集每轮训练和测试的结果,用于后面画图表使用 trainCorrect = [] testLost = [] testCorrect = [] trainedSampleNum = 0 # 初始化 earlystopping 类 early_stopping = earlyStopping(patience=15, tol=0.00000005) # 初始化测试集的历史最高准确率 test_highest_correct = None test_lowest_loss = None # 获取到整个训练集中的样本数量 trainTotalNum = trainData.dataset.__len__() # 获取到整个测试集中的样本数量 testTotalNum = testData.dataset.__len__() for epoch in range(epochs): net.train() train_loss = 0 train_correct = 0 for batch_index, (data, target) in enumerate(trainData): data = data.to(device, non_blocking=True) target = target.to(device, non_blocking=True).view(data.shape[0]) # 确保标签是 1 维的结构 trainRes = net(data) # 经过学习,这儿每个样本会输出 10 个特征结果对应的数据(如果模型中有 softmax ,就是概率),可以用于后续计算准确率 loss = lossFunc(trainRes, target) op.zero_grad() # 清空优化器上的梯度 loss.backward() op.step() # 开始计算准确数,并累加 yhat = torch.max(trainRes, 1)[1] # 从 trainRes 一个矩阵中,取出每个样本的最大值和最大值所在的索引,得到[1,2,1,4]这种类型的结果 correct_num = torch.sum( yhat == target) # yhat 、target 都是一维张量,使用 == 会挨个对比张量中的元素是否相等,最终得到[False, True, Flase]这样的数据,然后使用 torch.sum 就可以得到一个数字,因为 True 为 1 ,False 为 0 。 train_correct += correct_num # 将准备数累加 # 计算损失,并累加 train_loss += loss.item() # 这儿需要得到所有样本的损失的和 trainedSampleNum += data.shape[0] # print("本批次训练损失为:", loss.item() / data.shape[0]) if (batch_index + 1) % 125 == 0: # 现在进行到了哪个 epoch 、总共要训练多少个样本、已经训练了多少个样本、已训练的样本的百分比 print("Epoch{}:{} / {} = ({:.0f}%)".format( epoch + 1, trainedSampleNum, epochs * len(trainData) * batchSize, 100 * trainedSampleNum / (epochs * len(trainData) * batchSize) )) print("-------------------------------") avg_correct = (float(train_correct) / trainTotalNum) * 100 # print("本轮训练平均准确率:", avg_correct) trainCorrect.append(avg_correct) avg_loss = (float(train_loss) / trainTotalNum) * 100 # print("本轮训练平均损失率:", avg_loss) transLost.append(avg_loss) del data, target, train_loss, train_correct gc.collect() torch.cuda.empty_cache() # 一轮训练结束,就使用测试集进行测试 net.eval() test_loss = 0 test_correct = 0 for batch_index, (test_data, test_target) in enumerate(testData): with torch.no_grad(): test_data = test_data.to(device, non_blocking=True) test_target = test_target.to(device, non_blocking=True).view(test_data.shape[0]) # 确保标签是 1 维的结构 testRes = net(test_data) loss = lossFunc(testRes, test_target) # 计算损失,并累加 test_loss += loss.item() # 计算准备数,并累加 yhat = torch.max(testRes, 1)[1] # 从 trainRes 一个矩阵中,取出每个样本的最大值和最大值所在的索引,得到[1,2,1,4]这种类型的结果 correct_num = torch.sum( yhat == test_target) # yhat 、target 都是一维张量,使用 == 会挨个对比张量中的元素是否相等,最终得到[False, True, Flase]这样的数据,然后使用 torch.sum 就可以得到一个数字,因为 True 为 1 ,False 为 0 。 test_correct += correct_num # 将准备数累加 avg_test_correct = (float(test_correct) / testTotalNum) * 100 # print("本轮测试平均准确率:", avg_test_correct) testCorrect.append(avg_test_correct) avg_test_loss = (float(test_loss) / testTotalNum) * 100 # print("本轮测试平均损失率:", avg_test_loss) testLost.append(avg_test_loss) print("本轮训练平均准确率:{}, 本轮训练平均损失率: {}, 本轮测试平均准确率:{}, 本轮测试平均损失率:{}".format( avg_correct, avg_loss, avg_test_correct, avg_test_loss)) del test_data, test_target, test_loss, test_correct gc.collect() torch.cuda.empty_cache() # 如果测试集损失出现新低或者准确率出现新高,就保存在模型的权重,防止中途断电等原因需要从头再来 if test_highest_correct is None: test_highest_correct = avg_test_correct if test_highest_correct < avg_test_correct: test_highest_correct = avg_test_correct torch.save(net.state_dict(), './v6/model-' + str(epoch + 1) + '.pth') print("model saved") # 最好在测试集上使用提前停止,如果使用训练集无法预测过拟合这种情况 early_stop = early_stopping(avg_test_loss) # 这儿使用提前停止! if early_stop: break print("mission completed") return transLost, trainCorrect, testLost, testCorrectmodel = MyResNet().to(device)# model.load_state_dict(torch.load("./v4/model-49.pth"))loss_func = nn.CrossEntropyLoss(reduction='sum') # 因为我们在训练函数中,在计算损失的时候是计算的每个样本的损失的和,所以这儿需要使用 reduction='sum'opt = optim.RMSprop(model.parameters(), lr=lr, weight_decay=0.00005, momentum=0.0001)train_data = DataLoader(svhn_train, batch_size=batchSize, shuffle=True, drop_last=False, pin_memory=True)test_data = DataLoader(svhn_test, batch_size=batchSize, shuffle=False, drop_last=False, pin_memory=True)# 开始训练transLost, trainCorrect, testLost, testCorrect = fit(model, loss_func, opt, train_data, test_data, epochs)# 训练结果可视化plt.plot(transLost, label='train loss')plt.plot(testLost, label='test loss')plt.plot(trainCorrect, label='train correcct')plt.plot(testCorrect, label='test correcct')plt.xlabel('Epoch')plt.ylabel('CrossEntropy Loss')plt.title('Training Loss')plt.legend()plt.grid(True)plt.show()