cs.AI updates on arXiv.org 07月08日 13:54
SCALE: Towards Collaborative Content Analysis in Social Science with Large Language Model Agents and Human Intervention
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了SCALE,一种利用大型语言模型模拟内容分析的框架,通过模拟内容分析的关键阶段,实现近似人类水平的内容分析能力。

arXiv:2502.10937v2 Announce Type: replace Abstract: Content analysis breaks down complex and unstructured texts into theory-informed numerical categories. Particularly, in social science, this process usually relies on multiple rounds of manual annotation, domain expert discussion, and rule-based refinement. In this paper, we introduce SCALE, a novel multi-agent framework that effectively $\underline{\textbf{S}}$imulates $\underline{\textbf{C}}$ontent $\underline{\textbf{A}}$nalysis via $\underline{\textbf{L}}$arge language model (LLM) ag$\underline{\textbf{E}}$nts. SCALE imitates key phases of content analysis, including text coding, collaborative discussion, and dynamic codebook evolution, capturing the reflective depth and adaptive discussions of human researchers. Furthermore, by integrating diverse modes of human intervention, SCALE is augmented with expert input to further enhance its performance. Extensive evaluations on real-world datasets demonstrate that SCALE achieves human-approximated performance across various complex content analysis tasks, offering an innovative potential for future social science research.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

内容分析 大型语言模型 社会科学研究
相关文章