cs.AI updates on arXiv.org 07月08日 13:54
Losing Control: Data Poisoning Attack on Guided Diffusion via ControlNet
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种针对文本到图像扩散模型中控制网络的数据中毒方法,揭示了其潜在的安全风险,强调数据清洗和防御机制的重要性。

arXiv:2507.04726v1 Announce Type: cross Abstract: Text-to-image diffusion models have achieved remarkable success in translating textual prompts into high-fidelity images. ControlNets further extend these models by allowing precise, image-based conditioning (e.g., edge maps, depth, pose), enabling fine-grained control over structure and style. However, their dependence on large, publicly scraped datasets -- and the increasing use of community-shared data for fine-tuning -- exposes them to stealthy data poisoning attacks. In this work, we introduce a novel data poisoning method that manipulates ControlNets to generate images containing specific content without any text triggers. By injecting poisoned samples -- each pairing a subtly triggered input with an NSFW target -- the model retains clean-prompt fidelity yet reliably produces NSFW outputs when the trigger is present. On large-scale, high-quality datasets, our backdoor achieves high attack success rate while remaining imperceptible in raw inputs. These results reveal a critical vulnerability in open-source ControlNets pipelines and underscore the need for robust data sanitization and defense mechanisms.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

控制网络模型 数据中毒攻击 文本到图像扩散模型 数据安全 防御机制
相关文章