cs.AI updates on arXiv.org 07月08日 13:54
Neural-Network solver of ideal MHD equilibria
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于人工神经网络的三维磁流体动力学平衡计算新方法,通过参数化傅里叶模式与现有计算方法进行比较,在计算效率和精确度方面取得显著成果。

arXiv:2507.03119v1 Announce Type: cross Abstract: We present a novel approach to compute three-dimensional Magnetohydrodynamic equilibria by parametrizing Fourier modes with artificial neural networks and compare it to equilibria computed by conventional solvers. The full nonlinear global force residual across the volume in real space is then minimized with first order optimizers. Already,we observe competitive computational cost to arrive at the same minimum residuals computed by existing codes. With increased computational cost,lower minima of the residual are achieved by the neural networks,establishing a new lower bound for the force residual. We use minimally complex neural networks,and we expect significant improvements for solving not only single equilibria with neural networks,but also for computing neural network models valid over continuous distributions of equilibria.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

磁流体动力学 神经网络 计算方法 平衡计算 傅里叶模式
相关文章