cs.AI updates on arXiv.org 07月08日 13:54
Information-Guided Diffusion Sampling for Dataset Distillation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种信息引导扩散采样方法,针对数据蒸馏任务中低图像类别(IPC)设置下的多样性不足问题,通过保留原型信息和上下文信息,显著提升数据蒸馏性能。

arXiv:2507.04619v1 Announce Type: cross Abstract: Dataset distillation aims to create a compact dataset that retains essential information while maintaining model performance. Diffusion models (DMs) have shown promise for this task but struggle in low images-per-class (IPC) settings, where generated samples lack diversity. In this paper, we address this issue from an information-theoretic perspective by identifying two key types of information that a distilled dataset must preserve: ($i$) prototype information $\mathrm{I}(X;Y)$, which captures label-relevant features; and ($ii$) contextual information $\mathrm{H}(X | Y)$, which preserves intra-class variability. Here, $(X,Y)$ represents the pair of random variables corresponding to the input data and its ground truth label, respectively. Observing that the required contextual information scales with IPC, we propose maximizing $\mathrm{I}(X;Y) + \beta \mathrm{H}(X | Y)$ during the DM sampling process, where $\beta$ is IPC-dependent. Since directly computing $\mathrm{I}(X;Y)$ and $\mathrm{H}(X | Y)$ is intractable, we develop variational estimations to tightly lower-bound these quantities via a data-driven approach. Our approach, information-guided diffusion sampling (IGDS), seamlessly integrates with diffusion models and improves dataset distillation across all IPC settings. Experiments on Tiny ImageNet and ImageNet subsets show that IGDS significantly outperforms existing methods, particularly in low-IPC regimes. The code will be released upon acceptance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据蒸馏 扩散模型 信息理论
相关文章