cs.AI updates on arXiv.org 07月08日 13:54
Model Inversion Attacks on Llama 3: Extracting PII from Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLMs)在自然语言处理中的应用及其隐私风险,以Meta开发的Llama 3.2模型为例,展示了模型逆攻击并提取个人信息,提出防御策略及隐私保护技术的研究方向。

arXiv:2507.04478v1 Announce Type: cross Abstract: Large language models (LLMs) have transformed natural language processing, but their ability to memorize training data poses significant privacy risks. This paper investigates model inversion attacks on the Llama 3.2 model, a multilingual LLM developed by Meta. By querying the model with carefully crafted prompts, we demonstrate the extraction of personally identifiable information (PII) such as passwords, email addresses, and account numbers. Our findings highlight the vulnerability of even smaller LLMs to privacy attacks and underscore the need for robust defenses. We discuss potential mitigation strategies, including differential privacy and data sanitization, and call for further research into privacy-preserving machine learning techniques.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 隐私风险 模型逆攻击 防御策略 隐私保护
相关文章