cs.AI updates on arXiv.org 07月08日 13:53
VOLTRON: Detecting Unknown Malware Using Graph-Based Zero-Shot Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种结合变分图自动编码器(VGAE)和孪生神经网络(SNN)的零样本学习框架,用于检测Android恶意软件,无需特定恶意软件家族的先验示例。实验结果表明,该方法在零日恶意软件检测方面优于现有技术,达到96.24%的准确率和95.20%的召回率。

arXiv:2507.04275v1 Announce Type: cross Abstract: The persistent threat of Android malware presents a serious challenge to the security of millions of users globally. While many machine learning-based methods have been developed to detect these threats, their reliance on large labeled datasets limits their effectiveness against emerging, previously unseen malware families, for which labeled data is scarce or nonexistent. To address this challenge, we introduce a novel zero-shot learning framework that combines Variational Graph Auto-Encoders (VGAE) with Siamese Neural Networks (SNN) to identify malware without needing prior examples of specific malware families. Our approach leverages graph-based representations of Android applications, enabling the model to detect subtle structural differences between benign and malicious software, even in the absence of labeled data for new threats. Experimental results show that our method outperforms the state-of-the-art MaMaDroid, especially in zero-day malware detection. Our model achieves 96.24% accuracy and 95.20% recall for unknown malware families, highlighting its robustness against evolving Android threats.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Android恶意软件 零样本学习 恶意软件检测 VGAE SNN
相关文章