cs.AI updates on arXiv.org 07月08日 13:53
Generalized Adaptive Transfer Network: Enhancing Transfer Learning in Reinforcement Learning Across Domains
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出GATN,一种旨在解决强化学习中的任务泛化、环境适应性和迁移效率的深度学习架构。GATN在多个基准测试中展现优异性能,为实际应用提供支持。

arXiv:2507.03026v1 Announce Type: cross Abstract: Transfer learning in Reinforcement Learning (RL) enables agents to leverage knowledge from source tasks to accelerate learning in target tasks. While prior work, such as the Attend, Adapt, and Transfer (A2T) framework, addresses negative transfer and selective transfer, other critical challenges remain underexplored. This paper introduces the Generalized Adaptive Transfer Network (GATN), a deep RL architecture designed to tackle task generalization across domains, robustness to environmental changes, and computational efficiency in transfer. GATN employs a domain-agnostic representation module, a robustness-aware policy adapter, and an efficient transfer scheduler to achieve these goals. We evaluate GATN on diverse benchmarks, including Atari 2600, MuJoCo, and a custom chatbot dialogue environment, demonstrating superior performance in cross-domain generalization, resilience to dynamic environments, and reduced computational overhead compared to baselines. Our findings suggest GATN is a versatile framework for real-world RL applications, such as adaptive chatbots and robotic control.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 迁移学习 GATN 深度学习 环境适应性
相关文章