cs.AI updates on arXiv.org 07月08日 13:53
Iterative Zoom-In: Temporal Interval Exploration for Long Video Understanding
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Temporal Search的框架,旨在提升多模态大型语言模型对长视频的理解能力,通过动态调整时间焦点,减少内存消耗,避免关键信息遗漏。

arXiv:2507.02946v1 Announce Type: cross Abstract: Multimodal Large Language Models (MLLMs) have shown strong performance in video understanding tasks. However, they continue to struggle with long-form videos because of an inefficient perception of temporal intervals. Unlike humans, who can dynamically adjust their temporal focus to locate query-relevant moments, current MLLMs often rely on dense, uniform sampling across the video timeline, leading to high memory consumption and a risk of missing crucial information. To address this challenge, we introduce Temporal Search, a training-free framework that enables MLLMs to explore temporal regions for improved long video understanding iteratively. TS is based on a key observation: the model's generation confidence across different temporal intervals is highly correlated with prediction accuracy. TS operates through two main iterative stages. First, the MLLM proposes a temporal interval that is likely to contain task-relevant information. Then, it samples a fixed number of frames from the interval, regardless of length, and feeds them into the model to produce a refined response and confidence score. TS refines the focus of the model by iteratively shifting attention to more fine-grained temporal intervals, improving its understanding of long videos. Additionally, keyframe-level descriptions are collected to facilitate cross-interval perception throughout the video. To further improve efficiency, we introduce TS-BFS, a best-first search strategy over a tree. Each node represents a candidate interval and is expanded via two methods: self-driven proposals and uniform partitioning. Nodes are scored based on confidence and self-evaluation, and the most promising one is selected for continued exploration.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MLLM 长视频理解 时序搜索 效率提升 视频分析
相关文章