cs.AI updates on arXiv.org 07月08日 13:53
Control Synthesis in Partially Observable Environments for Complex Perception-Related Objectives
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究在部分可观测马尔可夫决策过程环境中,合成复杂感知相关目标的最优策略问题。通过引入co-safe线性不等式时态逻辑,将目标转化为可达性目标,并采用蒙特卡洛树搜索方法解决可扩展性问题,以无人机探测案例验证方法的有效性。

arXiv:2507.02942v1 Announce Type: cross Abstract: Perception-related tasks often arise in autonomous systems operating under partial observability. This work studies the problem of synthesizing optimal policies for complex perception-related objectives in environments modeled by partially observable Markov decision processes. To formally specify such objectives, we introduce \emph{co-safe linear inequality temporal logic} (sc-iLTL), which can define complex tasks that are formed by the logical concatenation of atomic propositions as linear inequalities on the belief space of the POMDPs. Our solution to the control synthesis problem is to transform the \mbox{sc-iLTL} objectives into reachability objectives by constructing the product of the belief MDP and a deterministic finite automaton built from the sc-iLTL objective. To overcome the scalability challenge due to the product, we introduce a Monte Carlo Tree Search (MCTS) method that converges in probability to the optimal policy. Finally, a drone-probing case study demonstrates the applicability of our method.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

感知任务 马尔可夫决策过程 最优策略 蒙特卡洛树搜索 无人机探测
相关文章