cs.AI updates on arXiv.org 07月08日 12:33
Learning Software Bug Reports: A Systematic Literature Review
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文系统综述了机器学习在软件工程中bug报告分析的应用,包括模型、方法、软件项目、任务类型及评价指标等方面,并提出了未来研究方向。

arXiv:2507.04422v1 Announce Type: cross Abstract: The recent advancement of artificial intelligence, especially machine learning (ML), has significantly impacted software engineering research, including bug report analysis. ML aims to automate the understanding, extraction, and correlation of information from bug reports. Despite its growing importance, there has been no comprehensive review in this area. In this paper, we present a systematic literature review covering 1,825 papers, selecting 204 for detailed analysis. We derive seven key findings: 1) Extensive use of CNN, LSTM, and $k$NN for bug report analysis, with advanced models like BERT underutilized due to their complexity. 2) Word2Vec and TF-IDF are popular for feature representation, with a rise in deep learning approaches. 3) Stop word removal is the most common preprocessing, with structural methods rising after 2020. 4) Eclipse and Mozilla are the most frequently evaluated software projects. 5) Bug categorization is the most common task, followed by bug localization and severity prediction. 6) There is increasing attention on specific bugs like non-functional and performance bugs. 7) Common evaluation metrics are F1-score, Recall, Precision, and Accuracy, with $k$-fold cross-validation preferred for model evaluation. 8) Many studies lack robust statistical tests. We also identify six promising future research directions to provide useful insights for practitioners.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 软件工程 bug报告分析 评价指标 未来研究
相关文章