cs.AI updates on arXiv.org 07月08日
Just Enough Shifts: Mitigating Over-Refusal in Aligned Language Models with Targeted Representation Fine-Tuning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为ACTOR的培训框架,通过利用内部激活模式来减少大语言模型的过度拒绝,提高用户体验和模型效用。

arXiv:2507.04250v1 Announce Type: cross Abstract: Safety alignment is crucial for large language models (LLMs) to resist malicious instructions but often results in over-refusals, where benign prompts are unnecessarily rejected, impairing user experience and model utility. We introduce ACTOR (Activation-Based Training for Over-Refusal Reduction), a robust and compute- and data-efficient training framework that minimizes over-refusals by leveraging internal activation patterns from diverse queries. ACTOR precisely identifies and adjusts the activation components that trigger refusals, providing stronger control over the refusal mechanism. By fine-tuning only a single model layer, ACTOR effectively reduces over-refusals across multiple benchmarks while maintaining the model's ability to handle harmful queries and preserve overall utility.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大语言模型 训练框架 拒绝率降低
相关文章