cs.AI updates on arXiv.org 07月08日
LayerCake: Token-Aware Contrastive Decoding within Large Language Model Layers
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对大型语言模型(LLMs)的事实生成优化方法,通过对比解码策略提高事实准确性,无需额外训练,实验证明在多个LLMs和基准测试中均有效。

arXiv:2507.04404v1 Announce Type: new Abstract: Large language models (LLMs) excel at natural language understanding and generation but remain vulnerable to factual errors, limiting their reliability in knowledge-intensive tasks. While decoding-time strategies provide a promising efficient solution without training, existing methods typically treat token-level and layer-level signals in isolation, overlooking the joint dynamics between them. In this work, we introduce a token-aware, layer-localized contrastive decoding method that aligns specific token types with their most influential transformer layers to improve factual generation. Through empirical attention analysis, we identify two key patterns: punctuation tokens receive dominant attention in early layers, while conceptual tokens govern semantic reasoning in intermediate layers. By selectively suppressing attention to these token types at their respective depths, we achieve the induction of controlled factual degradation and derive contrastive signals to guide the final factual decoding. Our method requires no additional training or model modification, and experiments demonstrate that our method consistently improves factuality across multiple LLMs and various benchmarks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 事实生成 对比解码 模型优化
相关文章