cs.AI updates on arXiv.org 07月08日 12:33
DC-Mamber: A Dual Channel Prediction Model based on Mamba and Linear Transformer for Multivariate Time Series Forecasting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出了一种名为DC-Mamber的双通道时间序列预测模型,结合Mamba和线性Transformer的优势,在多变量时间序列预测中取得优越性能。

arXiv:2507.04381v1 Announce Type: new Abstract: In multivariate time series forecasting (MTSF), existing strategies for processing sequences are typically categorized as channel-independent and channel-mixing. The former treats all temporal information of each variable as a token, focusing on capturing local temporal features of individual variables, while the latter constructs a token from the multivariate information at each time step, emphasizing the modeling of global temporal dependencies. Current mainstream models are mostly based on Transformer and the emerging Mamba. Transformers excel at modeling global dependencies through self-attention mechanisms but exhibit limited sensitivity to local temporal patterns and suffer from quadratic computational complexity, restricting their efficiency in long-sequence processing. In contrast, Mamba, based on state space models (SSMs), achieves linear complexity and efficient long-range modeling but struggles to aggregate global contextual information in parallel. To overcome the limitations of both models, we propose DC-Mamber, a dual-channel forecasting model based on Mamba and linear Transformer for time series forecasting. Specifically, the Mamba-based channel employs a channel-independent strategy to extract intra-variable features, while the Transformer-based channel adopts a channel-mixing strategy to model cross-timestep global dependencies. DC-Mamber first maps the raw input into two distinct feature representations via separate embedding layers. These representations are then processed by a variable encoder (built on Mamba) and a temporal encoder (built on linear Transformer), respectively. Finally, a fusion layer integrates the dual-channel features for prediction. Extensive experiments on eight public datasets confirm DC-Mamber's superior accuracy over existing models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多变量时间序列预测 DC-Mamber模型 Mamba 线性Transformer
相关文章