cs.AI updates on arXiv.org 07月08日 12:33
Word stress in self-supervised speech models: A cross-linguistic comparison
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了自监督语音模型Wav2vec 2.0在五种语言中学习到的词重音表示,并通过S3M嵌入训练诊断重音分类器,证明了其在区分重音和非重音音节上的高准确性,并揭示了词重音表示的语言特异性。

arXiv:2507.04738v1 Announce Type: cross Abstract: In this paper we study word stress representations learned by self-supervised speech models (S3M), specifically the Wav2vec 2.0 model. We investigate the S3M representations of word stress for five different languages: Three languages with variable or lexical stress (Dutch, English and German) and two languages with fixed or demarcative stress (Hungarian and Polish). We train diagnostic stress classifiers on S3M embeddings and show that they can distinguish between stressed and unstressed syllables in read-aloud short sentences with high accuracy. We also tested language-specificity effects of S3M word stress. The results indicate that the word stress representations are language-specific, with a greater difference between the set of variable versus the set of fixed stressed languages.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

S3M模型 词重音识别 多语言
相关文章