cs.AI updates on arXiv.org 07月08日 12:33
Roadmap for using large language models (LLMs) to accelerate cross-disciplinary research with an example from computational biology
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLMs)在科研中的应用及其面临的挑战,包括幻觉、偏见等,提出将LLMs作为辅助工具,以促进跨学科研究和创新。

arXiv:2507.03722v1 Announce Type: new Abstract: Large language models (LLMs) are powerful artificial intelligence (AI) tools transforming how research is conducted. However, their use in research has been met with skepticism, due to concerns about hallucinations, biases and potential harms to research. These emphasize the importance of clearly understanding the strengths and weaknesses of LLMs to ensure their effective and responsible use. Here, we present a roadmap for integrating LLMs into cross-disciplinary research, where effective communication, knowledge transfer and collaboration across diverse fields are essential but often challenging. We examine the capabilities and limitations of LLMs and provide a detailed computational biology case study (on modeling HIV rebound dynamics) demonstrating how iterative interactions with an LLM (ChatGPT) can facilitate interdisciplinary collaboration and research. We argue that LLMs are best used as augmentative tools within a human-in-the-loop framework. Looking forward, we envisage that the responsible use of LLMs will enhance innovative cross-disciplinary research and substantially accelerate scientific discoveries.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 跨学科研究 科研应用 人工智能 挑战与机遇
相关文章