cs.AI updates on arXiv.org 07月08日 12:33
Discovering Algorithms with Computational Language Processing
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种将算法视为操作序列的框架,通过蒙特卡洛树搜索和强化学习技术,自动发现和优化算法,显著提升NP-hard组合优化问题及量子计算方法性能。

arXiv:2507.03190v1 Announce Type: new Abstract: Algorithms are the engine for reproducible problem-solving. We present a framework automating algorithm discovery by conceptualizing them as sequences of operations, represented as tokens. These computational tokens are chained using a grammar, enabling the formation of increasingly sophisticated procedures. Our ensemble Monte Carlo tree search (MCTS) guided by reinforcement learning (RL) explores token chaining and drives the creation of new tokens. This methodology rediscovers, improves, and generates new algorithms that substantially outperform existing methods for strongly NP-hard combinatorial optimization problems and foundational quantum computing approaches such as Grover's and Quantum Approximate Optimization Algorithm. Operating at the computational rather than code-generation level, our framework produces algorithms that can be tailored specifically to problem instances, not merely classes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

算法发现 蒙特卡洛树搜索 强化学习 量子计算 组合优化
相关文章