cs.AI updates on arXiv.org 07月08日
Static Segmentation by Tracking: A Label-Efficient Approach for Fine-Grained Specimen Image Segmentation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于伪视频的静态分割方法(SST),通过将生物标本图像拼接成伪视频,将特征分割转化为跟踪问题,仅需一种标记图像即可实现高效分割,在生物图像分析领域取得突破。

arXiv:2501.06749v2 Announce Type: replace-cross Abstract: We study image segmentation in the biological domain, particularly trait segmentation from specimen images (e.g., butterfly wing stripes, beetle elytra). This fine-grained task is crucial for understanding the biology of organisms, but it traditionally requires manually annotating segmentation masks for hundreds of images per species, making it highly labor-intensive. To address this challenge, we propose a label-efficient approach, Static Segmentation by Tracking (SST), based on a key insight: while specimens of the same species exhibit natural variation, the traits of interest show up consistently. This motivates us to concatenate specimen images into a pseudo-video'' and reframe trait segmentation as a tracking problem. Specifically, SST generates masks for unlabeled images by propagating annotated or predicted masks from thepseudo-preceding'' images. Built upon recent video segmentation models, such as Segment Anything Model 2, SST achieves high-quality trait segmentation with only one labeled image per species, marking a breakthrough in specimen image analysis. To further enhance segmentation quality, we introduce a cycle-consistent loss for fine-tuning, again requiring only one labeled image. Additionally, we demonstrate the broader potential of SST, including one-shot instance segmentation in natural images and trait-based image retrieval.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

生物图像分割 SST方法 伪视频技术
相关文章