cs.AI updates on arXiv.org 07月04日
Circuit-tuning: A Mechanistic Approach for Identifying Parameter Redundancy and Fine-tuning Neural Networks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于节点内在维度的模型学习机制可解释性分析方法,通过电路微调技术实现了透明、可解释的微调,为神经网络学习过程中的自组织机制提供了新的洞察。

arXiv:2502.06106v2 Announce Type: replace-cross Abstract: The study of mechanistic interpretability aims to reverse-engineer a model to explain its behaviors. While recent studies have focused on the static mechanism of a certain behavior, the learning dynamics inside a model remain to be explored. In this work, we develop an interpretable fine-tuning method for analyzing the mechanism behind learning. We first introduce the concept of node-level intrinsic dimensionality to describe the learning process of a model in a computational graph. Based on our theory, we propose circuit-tuning, a two-stage algorithm that iteratively builds the minimal subgraph for a specific task and updates the key parameters in a heuristic way. Experimental results confirm the existence of the intrinsic dimensionality at the node level and demonstrate the effectiveness of our method for transparent and interpretable fine-tuning. We visualize and analyze the circuits before, during, and after fine-tuning, providing new insights into the self-organization mechanism of a neural network in the learning process.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

模型可解释性 学习机制 电路微调 神经网络 自组织机制
相关文章