cs.AI updates on arXiv.org 07月04日 12:08
Evaluating Language Models For Threat Detection in IoT Security Logs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用微调的大型语言模型(LLMs)进行物联网安全日志的异常检测和缓解策略推荐,对比了三种LLMs在二分类和多分类异常检测中的效果,并通过定义特定于物联网的缓解措施,实现检测与推荐相结合的指导。

arXiv:2507.02390v1 Announce Type: cross Abstract: Log analysis is a relevant research field in cybersecurity as they can provide a source of information for the detection of threats to networks and systems. This paper presents a pipeline to use fine-tuned Large Language Models (LLMs) for anomaly detection and mitigation recommendation using IoT security logs. Utilizing classical machine learning classifiers as a baseline, three open-source LLMs are compared for binary and multiclass anomaly detection, with three strategies: zero-shot, few-shot prompting and fine-tuning using an IoT dataset. LLMs give better results on multi-class attack classification than the corresponding baseline models. By mapping detected threats to MITRE CAPEC, defining a set of IoT-specific mitigation actions, and fine-tuning the models with those actions, the models are able to provide a combined detection and recommendation guidance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

物联网安全 异常检测 大型语言模型 缓解策略
相关文章