cs.AI updates on arXiv.org 07月04日 12:08
Offline Reinforcement Learning with Penalized Action Noise Injection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PANI方法,通过噪声注入动作增强离线学习,无需复杂的扩散模型,在多种基准测试中显著提升离线强化学习算法性能。

arXiv:2507.02356v1 Announce Type: cross Abstract: Offline reinforcement learning (RL) optimizes a policy using only a fixed dataset, making it a practical approach in scenarios where interaction with the environment is costly. Due to this limitation, generalization ability is key to improving the performance of offline RL algorithms, as demonstrated by recent successes of offline RL with diffusion models. However, it remains questionable whether such diffusion models are necessary for highly performing offline RL algorithms, given their significant computational requirements during inference. In this paper, we propose Penalized Action Noise Injection (PANI), a method that simply enhances offline learning by utilizing noise-injected actions to cover the entire action space, while penalizing according to the amount of noise injected. This approach is inspired by how diffusion models have worked in offline RL algorithms. We provide a theoretical foundation for this method, showing that offline RL algorithms with such noise-injected actions solve a modified Markov Decision Process (MDP), which we call the noisy action MDP. PANI is compatible with a wide range of existing off-policy and offline RL algorithms, and despite its simplicity, it demonstrates significant performance improvements across various benchmarks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

离线强化学习 PANI方法 噪声注入 性能提升
相关文章