cs.AI updates on arXiv.org 07月04日 12:08
Multi-Label Classification Framework for Hurricane Damage Assessment
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于ResNet和特定注意力机制的多标签分类框架,用于飓风灾害后的损害评估。该方法在Michael飓风的Rescuenet数据集上实现了90.23%的平均精度,优于现有方法,有助于提高灾害响应效率。

arXiv:2507.02265v1 Announce Type: cross Abstract: Hurricanes cause widespread destruction, resulting in diverse damage types and severities that require timely and accurate assessment for effective disaster response. While traditional single-label classification methods fall short of capturing the complexity of post-hurricane damage, this study introduces a novel multi-label classification framework for assessing damage using aerial imagery. The proposed approach integrates a feature extraction module based on ResNet and a class-specific attention mechanism to identify multiple damage types within a single image. Using the Rescuenet dataset from Hurricane Michael, the proposed method achieves a mean average precision of 90.23%, outperforming existing baseline methods. This framework enhances post-hurricane damage assessment, enabling more targeted and efficient disaster response and contributing to future strategies for disaster mitigation and resilience. This paper has been accepted at the ASCE International Conference on Computing in Civil Engineering (i3CE 2025), and the camera-ready version will appear in the official conference proceedings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

飓风灾害 损害评估 多标签分类 ResNet 灾害响应
相关文章