cs.AI updates on arXiv.org 07月04日 12:08
Order Acquisition Under Competitive Pressure: A Rapidly Adaptive Reinforcement Learning Approach for Ride-Hailing Subsidy Strategies
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于强化学习的网约车平台优惠券策略框架FCA-RL,旨在快速适应竞争对手价格调整,并通过模拟环境RideGym优化订单获取,实验证明该方法有效。

arXiv:2507.02244v1 Announce Type: cross Abstract: The proliferation of ride-hailing aggregator platforms presents significant growth opportunities for ride-service providers by increasing order volume and gross merchandise value (GMV). On most ride-hailing aggregator platforms, service providers that offer lower fares are ranked higher in listings and, consequently, are more likely to be selected by passengers. This competitive ranking mechanism creates a strong incentive for service providers to adopt coupon strategies that lower prices to secure a greater number of orders, as order volume directly influences their long-term viability and sustainability. Thus, designing an effective coupon strategy that can dynamically adapt to market fluctuations while optimizing order acquisition under budget constraints is a critical research challenge. However, existing studies in this area remain scarce. To bridge this gap, we propose FCA-RL, a novel reinforcement learning-based subsidy strategy framework designed to rapidly adapt to competitors' pricing adjustments. Our approach integrates two key techniques: Fast Competition Adaptation (FCA), which enables swift responses to dynamic price changes, and Reinforced Lagrangian Adjustment (RLA), which ensures adherence to budget constraints while optimizing coupon decisions on new price landscape. Furthermore, we introduce RideGym, the first dedicated simulation environment tailored for ride-hailing aggregators, facilitating comprehensive evaluation and benchmarking of different pricing strategies without compromising real-world operational efficiency. Experimental results demonstrate that our proposed method consistently outperforms baseline approaches across diverse market conditions, highlighting its effectiveness in subsidy optimization for ride-hailing service providers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

网约车平台 优惠券策略 强化学习 价格调整 模拟环境
相关文章