cs.AI updates on arXiv.org 07月04日 12:08
DKGCM: A Spatio-Temporal Prediction Model for Traffic Flow by Fusing Spatial Node Clustering Method and Fourier Bidirectional Mamba Mechanism
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为DKGCM的新型图卷积网络结构,通过结合时空相似性聚类和FFT等方法,提高交通需求预测的准确性,实验表明其在多个数据集上优于现有方法。

arXiv:2507.01982v1 Announce Type: cross Abstract: Accurate traffic demand forecasting enables transportation management departments to allocate resources more effectively, thereby improving their utilization efficiency. However, complex spatiotemporal relationships in traffic systems continue to limit the performance of demand forecasting models. To improve the accuracy of spatiotemporal traffic demand prediction, we propose a new graph convolutional network structure called DKGCM. Specifically, we first consider the spatial flow distribution of different traffic nodes and propose a novel temporal similarity-based clustering graph convolution method, DK-GCN. This method utilizes Dynamic Time Warping (DTW) and K-means clustering to group traffic nodes and more effectively capture spatial dependencies. On the temporal scale, we integrate the Fast Fourier Transform (FFT) within the bidirectional Mamba deep learning framework to capture temporal dependencies in traffic demand. To further optimize model training, we incorporate the GRPO reinforcement learning strategy to enhance the loss function feedback mechanism. Extensive experiments demonstrate that our model outperforms several advanced methods and achieves strong results on three public datasets.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

交通需求预测 图卷积网络 时空关系
相关文章