cs.AI updates on arXiv.org 07月04日
Forecasting Labor Markets with LSTNet: A Multi-Scale Deep Learning Approach
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用美国劳工统计局数据,通过LSTNet模型预测短期就业变化并评估长期行业健康状况的方法。模型在多个行业表现优异,并展示了与实际就业波动的强相关性。

arXiv:2507.01979v1 Announce Type: cross Abstract: We present a deep learning approach for forecasting short-term employment changes and assessing long-term industry health using labor market data from the U.S. Bureau of Labor Statistics. Our system leverages a Long- and Short-Term Time-series Network (LSTNet) to process multivariate time series data, including employment levels, wages, turnover rates, and job openings. The model outputs both 7-day employment forecasts and an interpretable Industry Employment Health Index (IEHI). Our approach outperforms baseline models across most sectors, particularly in stable industries, and demonstrates strong alignment between IEHI rankings and actual employment volatility. We discuss error patterns, sector-specific performance, and future directions for improving interpretability and generalization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LSTNet 就业预测 行业健康评估 劳工统计局数据 时间序列分析
相关文章