cs.AI updates on arXiv.org 07月04日
Reconsidering the energy efficiency of spiking neural networks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对SNNs的能效进行严格再评估,建立公平基准,分析多种参数和硬件特性,揭示SNNs在特定条件下具有优越的能效。

arXiv:2409.08290v2 Announce Type: replace-cross Abstract: Spiking Neural Networks (SNNs) promise higher energy efficiency over conventional Quantized Artificial Neural Networks (QNNs) due to their event-driven, spike-based computation. However, prevailing energy evaluations often oversimplify, focusing on computational aspects while neglecting critical overheads like comprehensive data movement and memory access. Such simplifications can lead to misleading conclusions regarding the true energy benefits of SNNs. This paper presents a rigorous re-evaluation. We establish a fair baseline by mapping rate-encoded SNNs with $T$ timesteps to functionally equivalent QNNs with $\lceil \log_2(T+1) \rceil$ bits. This ensures both models have comparable representational capacities, as well has similar hardware requirement, enabling meaningful energy comparisons. We introduce a detailed analytical energy model encompassing core computation and data movement (sparse and dense activations, weights). Using this model, we systematically explore a wide parameter space, including intrinsic network characteristics ($T$, spike rate $s_r$, QNN sparsity $\gamma$, model size $N$, weight bit-level) and hardware characteristics (memory system and network-on-chip). Our analysis identifies specific operational regimes where SNNs genuinely offer superior energy efficiency. For example, under typical neuromorphic hardware conditions, SNNs with moderate time windows ($T \in [5,10]$) require an average spike rate ($s_r$) below 6.4% to outperform equivalent QNNs. These insights guide the design of genuinely energy-efficient neural network solutions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SNNs 能效评估 神经网络 硬件特性
相关文章