A Geodyssey – Enterprise Search Discovery, Text Mining, Machine Learning 07月03日
Pix2Geomodel: A Next-Generation Reservoir Geomodeling with Property-to-Property Translation.
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Al-Fakih等(2025)提出了一种名为Pix2Geomodel的先进条件生成对抗网络框架,用于提高格罗宁根气田Rotliegend储层地质建模的准确性,实现属性间的高精度翻译,并验证了其在数据稀缺条件下的储层特征描述潜力。

Pix2Geomodel: A Next-Generation Reservoir Geomodeling with Property-to-Property Translation. Interesting paper from Al-Fakih et al (2025).

Conclusions
“This study presented Pix2Geomodel, a pioneering conditional GAN framework, to enhance geological modeling of the Groningen gas field’s Rotliegend reservoir. By leveraging Pix2Pix architecture, the framework successfully predicted facies, porosity, permeability, and water saturation from masked inputs and facilitated property-to-property translation, achieving high accuracies (e.g., facies PA 0.88, water saturation PA 0.96) and robust translation performance (e.g., facies-to-Sw PA 0.98). The approach captured the reservoir’s spatial heterogeneity, validated by variogram analysis, and outperformed traditional methods in handling complex subsurface patterns. Despite challenges with porosity and permeability predictions due to microstructural variability, Pix2Geomodel demonstrated significant potential for reservoir characterization under data-scarce conditions. The study’s open-source datasets and code foster reproducibility, aligning with geoscience community goals. Future work will explore 3D modeling (Pix2Geomodel v2.0), multi-modal data integration, and advanced GAN architectures to address limitations and enhance applications in hydrocarbon recovery, geothermal energy, and carbon sequestration.”

https://arxiv.org/html/2506.17747v1

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Pix2Geomodel 地质建模 生成对抗网络
相关文章