cs.AI updates on arXiv.org 07月03日 12:07
BranchNet: A Neuro-Symbolic Learning Framework for Structured Multi-Class Classification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为BranchNet的神经符号学习框架,该框架将决策树集成转换为稀疏、部分连接的神经网络,在多类分类基准测试中,其准确率优于XGBoost,同时具有可解释性。

arXiv:2507.01781v1 Announce Type: cross Abstract: We introduce BranchNet, a neuro-symbolic learning framework that transforms decision tree ensembles into sparse, partially connected neural networks. Each branch, defined as a decision path from root to a parent of leaves, is mapped to a hidden neuron, preserving symbolic structure while enabling gradient-based optimization. The resulting models are compact, interpretable, and require no manual architecture tuning. Evaluated on a suite of structured multi-class classification benchmarks, BranchNet consistently outperforms XGBoost in accuracy, with statistically significant gains. We detail the architecture, training procedure, and sparsity dynamics, and discuss the model's strengths in symbolic interpretability as well as its current limitations, particularly on binary tasks where further adaptive calibration may be beneficial.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经符号学习 决策树 神经网络 BranchNet XGBoost
相关文章