cs.AI updates on arXiv.org 07月03日
Rethinking All Evidence: Enhancing Trustworthy Retrieval-Augmented Generation via Conflict-Driven Summarization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出CARE-RAG,一种通过冲突驱动的证据摘要来提升RAG系统生成可靠性的新框架。该框架通过参数感知证据和上下文感知证据的提取,以及3B LLaMA3.2模型的冲突驱动摘要,显著提高了RAG系统在噪声或冲突证据场景下的生成可靠性。

arXiv:2507.01281v1 Announce Type: cross Abstract: Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating their parametric knowledge with external retrieved content. However, knowledge conflicts caused by internal inconsistencies or noisy retrieved content can severely undermine the generation reliability of RAG systems.In this work, we argue that LLMs should rethink all evidence, including both retrieved content and internal knowledge, before generating responses.We propose CARE-RAG (Conflict-Aware and Reliable Evidence for RAG), a novel framework that improves trustworthiness through Conflict-Driven Summarization of all available evidence.CARE-RAG first derives parameter-aware evidence by comparing parameter records to identify diverse internal perspectives. It then refines retrieved evidences to produce context-aware evidence, removing irrelevant or misleading content. To detect and summarize conflicts, we distill a 3B LLaMA3.2 model to perform conflict-driven summarization, enabling reliable synthesis across multiple sources.To further ensure evaluation integrity, we introduce a QA Repair step to correct outdated or ambiguous benchmark answers.Experiments on revised QA datasets with retrieval data show that CARE-RAG consistently outperforms strong RAG baselines, especially in scenarios with noisy or conflicting evidence.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG CARE-RAG 知识冲突 生成可靠性 大语言模型
相关文章