cs.AI updates on arXiv.org 07月03日 12:07
How Metacognitive Architectures Remember Their Own Thoughts: A Systematic Review
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过系统综述,分析了计算元认知架构(CMAs)在模型、存储、记忆和处理元认知经验方面的技术,指出当前CMAs在标准化和评估方面存在的问题,并提出了未来研究方向。

arXiv:2503.13467v2 Announce Type: replace-cross Abstract: Background: Metacognition has gained significant attention for its potential to enhance autonomy and adaptability of artificial agents but remains a fragmented field: diverse theories, terminologies, and design choices have led to disjointed developments and limited comparability across systems. Existing overviews remain at a conceptual level that is undiscerning to the underlying algorithms, representations, and their respective success. Methods: We address this gap by performing an explorative systematic review. Reports were included if they described techniques enabling Computational Metacognitive Architectures (CMAs) to model, store, remember, and process their episodic metacognitive experiences, one of Flavell's (1979a) three foundational components of metacognition. Searches were conducted in 16 databases, consulted between December 2023 and June 2024. Data were extracted using a 20-item framework considering pertinent aspects. Results: A total of 101 reports on 35 distinct CMAs were included. Our findings show that metacognitive experiences may boost system performance and explainability, e.g., via self-repair. However, lack of standardization and limited evaluations may hinder progress: only 17% of CMAs were quantitatively evaluated regarding this review's focus, and significant terminological inconsistency limits cross-architecture synthesis. Systems also varied widely in memory content, data types, and employed algorithms. Discussion: Limitations include the non-iterative nature of the search query, heterogeneous data availability, and an under-representation of emergent, sub-symbolic CMAs. Future research should focus on standardization and evaluation, e.g., via community-driven challenges, and on transferring promising principles to emergent architectures.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

元认知 计算元认知架构 系统综述 标准化 评估
相关文章