cs.AI updates on arXiv.org 07月03日
Unsupervised Panoptic Interpretation of Latent Spaces in GANs Using Space-Filling Vector Quantization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为空间填充向量量化(SFVQ)的技术,用于提升生成对抗网络(GAN)的潜在空间可解释性,并应用于StyleGAN2和BigGAN网络,实验证明SFVQ曲线有助于确定潜在空间与生成因素之间的关系,同时可用于可控数据增强。

arXiv:2410.20573v2 Announce Type: replace-cross Abstract: Generative adversarial networks (GANs) learn a latent space whose samples can be mapped to real-world images. Such latent spaces are difficult to interpret. Some earlier supervised methods aim to create an interpretable latent space or discover interpretable directions, which requires exploiting data labels or annotated synthesized samples for training. However, we propose using a modification of vector quantization called space-filling vector quantization (SFVQ), which quantizes the data on a piece-wise linear curve. SFVQ can capture the underlying morphological structure of the latent space, making it interpretable. We apply this technique to model the latent space of pre-trained StyleGAN2 and BigGAN networks on various datasets. Our experiments show that the SFVQ curve yields a general interpretable model of the latent space such that it determines which parts of the latent space correspond to specific generative factors. Furthermore, we demonstrate that each line of the SFVQ curve can potentially refer to an interpretable direction for applying intelligible image transformations. We also demonstrate that the points located on an SFVQ line can be used for controllable data augmentation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

生成对抗网络 潜在空间 数据增强 SFVQ StyleGAN2
相关文章