cs.AI updates on arXiv.org 07月03日 12:07
Divergent Creativity in Humans and Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了大型语言模型(LLMs)在语义多样性方面的表现,与人类创造力进行对比,并探讨如何提升LLMs的创意输出。

arXiv:2405.13012v2 Announce Type: replace-cross Abstract: The recent surge of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLMs' semantic diversity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in computational creativity to analyze semantic divergence in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence that LLMs can surpass average human performance on the Divergent Association Task, and approach human creative writing abilities, though they fall short of the typical performance of highly creative humans. Notably, even the top performing LLMs are still largely surpassed by highly creative individuals, underscoring a ceiling that current LLMs still fail to surpass. Our human-machine benchmarking framework addresses the polemic surrounding the imminent replacement of human creative labour by AI, disentangling the quality of the respective creative linguistic outputs using established objective measures. While prompting deeper exploration of the distinctive elements of human inventive thought compared to those of AI systems, we lay out a series of techniques to improve their outputs with respect to semantic diversity, such as prompt design and hyper-parameter tuning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 语义多样性 创造力 AI与人类对比 技术提升
相关文章