cs.AI updates on arXiv.org 07月03日 12:07
Quantifying Student Success with Generative AI: A Monte Carlo Simulation Informed by Systematic Review
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过文献综述和模拟建模,探讨高等教育中学生对GenAI使用的认知,发现可用性和实用性态度因素对学习成果的影响大于情感或信任因素。

arXiv:2507.01062v1 Announce Type: cross Abstract: The exponential development of generative artificial intelligence (GenAI) technologies like ChatGPT has raised increasing curiosity about their use in higher education, specifically with respect to how students view them, make use of them, and the implications for learning outcomes. This paper employs a hybrid methodological approach involving a systematic literature review and simulation-based modeling to explore student perceptions of GenAI use in the context of higher education. A total of nineteen empirical articles from 2023 through 2025 were selected from the PRISMA-based search targeting the Scopus database. Synthesis of emerging patterns from the literature was achieved by thematic categorization. Six of these had enough quantitative information, i.e., item-level means and standard deviations, to permit probabilistic modeling. One dataset, from the resulting subset, was itself selected as a representative case with which to illustrate inverse-variance weighting by Monte Carlo simulation, by virtue of its well-designed Likert scale format and thematic alignment with the use of computing systems by the researcher. The simulation provided a composite "Success Score" forecasting the strength of the relationship between student perceptions and learning achievements. Findings reveal that attitude factors concerned with usability and real-world usefulness are significantly better predictors of positive learning achievement than affective or trust-based factors. Such an interdisciplinary perspective provides a unique means of linking thematic results with predictive modelling, resonating with longstanding controversies about the proper use of GenAI tools within the university.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GenAI 高等教育 学习成果 学生认知 模拟建模
相关文章